Buckling of axially compressed thin cylindrical shells with functionally graded middle layer

نویسندگان

  • Shi-Rong Li
  • R. C. Batra
چکیده

Buckling of a simply supported three-layer circular cylindrical shell under axial compressive load is studied. The inner and outer layers of the shell are comprised of the same homogeneous and isotropic material, and the middle layer is made of an isotropic functionally graded (FG) material whose Young’s modulus varies either affinely or parabolically in the thickness direction from its value for the material of the inner layer to that of the outer layer. The solution is expressed in terms of trigonometric functions that identically satisfy displacement type boundary conditions at the edges. Buckling loads for different values of the geometric parameters and the variation in material parameters of the middle layer are computed. Numerical results show that buckling modes are symmetric in the circumferential coordinate, and the buckling load decreases with an increase in the radius to thickness ratio, and increases with an increase in the average value of Young’s modulus of the middle layer. The increase in the length to radius ratio has no effect on the buckling load, and it increases the axial wave number of the buckled shapes. r 2006 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Torsional Stability of Cylindrical Shells with Functionally Graded Middle Layer on the Winkler Elastic Foundation

In this study, the torsional stability analysis is presented for thin cylindrical with the functionally graded (FG) middle layer resting on the Winker elastic foundation. The mechanical properties of functionally graded material (FGM) are assumed to be graded in the thickness direction according to a simple power law and exponential distributions in terms of volume fractions of the constituents...

متن کامل

Influence of the Elastic Foundation on the Free Vibration and Buckling of Thin-Walled Piezoelectric-Based FGM Cylindrical Shells Under Combined Loadings

In this paper, the influence of the elastic foundation on the free vibration and buckling of thin-walled piezoelectric-based functionally graded materials (FGM) cylindrical shells under combined loadings is investigated. The equations of motion are obtained by using the principle of Hamilton and Maxwell's equations and the Navier's type solution used to solve these equations. Material propertie...

متن کامل

First-Order Formulation for Functionally Graded Stiffened Cylindrical Shells Under Axial Compression

The buckling analysis of stiffened cylindrical shells by rings and stringers made of functionally graded materials subjected to axial compression loading is presented. It is assumed that the material properties vary as a power form of the thickness coordinate variable. The fundamental relations, the equilibrium and stability equations are derived using the first order shear deformation theory. ...

متن کامل

Nonlinear analysis of radially functionally graded hyperelastic cylindrical shells with axially-varying thickness and non-uniform pressure loads based on perturbation theory

In this study, nonlinear analysis for thick cylindrical pressure vessels with arbitrary variable thickness made of hyperelastic functionally graded material properties in nearly incompressible state and clamped boundary conditions under non-uniform pressure loading is presented. Thickness and pressure of the shell are considered in axial direction by arbitrary nonlinear profiles. The FG materia...

متن کامل

An Analytical Approach of Nonlinear Thermo-mechanical Buckling of Functionally Graded Graphene-reinforced Composite Laminated Cylindrical Shells under Compressive Axial Load Surrounded by Elastic Foundation

This paper deals with an analytical approach to predict the nonlinear buckling behavior of functionally graded graphene-reinforced composite laminated cylindrical shells under axial compressive load surrounded by Pasternak’s elastic foundation in a thermal environment. Piece-wise functionally graded graphene-reinforced, composite layers are sorted with different types of graphene distribution. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007